Ground-borne vibration - tunnels

ANDERSEN, L. and JONES, C.J.C., Coupled boundary and finite element analysis of vibration from railway tunnels-a comparison of two- and three-dimensional models	611
DEGRANDE, G., SCHEVENELS, M., CHATTERJEE, P., VAN DE VELDE, W., HÖLSCHER, P., HOPMAN, V., WANG, A. and DADKAH, N., Vibrations due to a test train at variable speeds in a deep bored tunnel embedded in London clay	626
DEGRANDE, G., CLOUTEAU, D., OTHMAN, R., ARNST, M., CHEBLI, H., KLEIN, R., CHATTERJEE, P. and JANSSENS, B., A numerical model for ground-borne vibrations from underground railway traffic based on a periodic finite element-boundary element formulation	645
HUSSEIN, M.F.M. and HUNT, H.E.M., A power flow method for evaluating vibration from underground railways	667
NAGY, A.B., FIALA, P., MÁRKI, F., AUGUSZTINOVICZ, F., DEGRANDE, G., JACOBS, S. and BRASSENX, D., Prediction of interior noise in buildings generated by underground rail traffic	680
Squeal noise	
VINCENT, N., KOCH, J.R., CHOLLET, H. and GUERDER, J.Y., Curve squeal of urban rolling stock-Part 1: State of the art and field measurements	691
KOCH, J.R., VINCENT, N., CHOLLET, H. and CHIELLO, O., Curve squeal of urban rolling stock-Part 2: Parametric study on a 1/4 scale test rig	701
CHIELLO, O., AYASSE, JB., VINCENT, N. and KOCH, JR., Curve squeal of urban rolling stock-Part 3: Theoretical model	710
MÜLLER, B. and OERTLI, J., Combating Curve Squeal: Monitoring existing applications	728
LORANG, X., FOY-MARGIOCCHI, F., NGUYEN, Q.S. and GAUTIER, P.E., TGV disc brake squeal	735
EADIE, D.T. and SANTORO, M., Top-of-rail friction control for curve noise mitigation and corrugation rate reduction	747
BRUNEL, J.F., DUFRÉNOY, P., NAÏT, M., MUÑOZ, J.L. and DEMILLY, F., Transient models for curve squeal noise	758
MONK-STEEL, A.D., THOMPSON, D.J., DE BEER, F.G. and JANSSENS, M.H.A., An investigation into the influence of longitudinal creepage on railway squeal noise due to lateral creepage	766
Roughness	
DIEHL, R.J. and HOLM, P., Roughness measurements-Have the necessities changed?	777
VERHEIJEN, E., A survey on roughness measurements	784
JOHANSSON, A., Out-of-round railway wheels-assessment of wheel tread irregularities in train traffic	795
FORD, R.A.J. and THOMPSON, D.J., Simplified contact filters in wheel/rail noise prediction	807
SHENG, X., THOMPSON, D.J., JONES, C.J.C., XIE, G., IWNICKI, S.D., ALLEN, P. and HSU, S.S., Simulations of roughness initiation and growth on railway rails	819
JIN, X.S., WEN, Z.F., WANG, K.Y., ZHOU, Z.R., LIU, Q.Y. and LI, C.H., Three-dimensional train-track model for study of rail corrugation	830
FIDECARO, F., LICITRA, G., BERTOLINI, A., MACCIONI, E. and PAVIOTTI, M., Interferometric rail roughness measurement at train operational speed	856
Ground-borne vibration - mitigation	
DEGEN, K.G., BEHR, W. and GRÜTZ, HP., Investigations and results concerning railway-induced ground-	

EGEN, K.G., BEHR, W. and GRi borne vibrations in Germany

865

HANSON, C.E. and SINGLETON JR., H.L., Performance of ballast mats on passenger railroads: Measurement vs. projections	873
GUIGOU-CARTER, C., VILLOT, M., GUILLERME, B. and PETIT, C., Analytical and experimental study of sleeper SAT S 312 in slab track Sateba system	878
SAURENMAN, H. and PHILLIPS, J., In-service tests of the effectiveness of vibration control measures on the BART rail transit system	888
Cox, S.J., WANG, A., MORISON, C., CARELS, P., KELLY, R. and BEWES, O.G., A test rig to investigate slab track structures for controlling ground vibration	901
Vehicles and bridges	
FRID, A., LETH, S., HÖGSTRÖM, C. and FÄRM, J., Noise control design of railway vehicles-Impact of new legislation	910
XIE, G., THOMPSON, D.J. and JONES, C.J.C., A modelling approach for the vibroacoustic behaviour of aluminium extrusions used in railway vehicles	921
BEWES, O.G., THOMPSON, D.J., JONES, C.J.C. and WANG, A., Calculation of noise from railway bridges and viaducts: Experimental validation of a rapid calculation model	933
POISSON, F. and MARGIOCCHI, F., The use of dynamic dampers on the rail to reduce the noise of steel railway bridges	944
AUGUSZTINOVICZ, F., MÁRKI, F., GULYÁS, K., NAGY, A.B., FIALA, P. and GAJDÁTSY, P., Derivation of train track isolation requirement for a steel road bridge based on vibro-acoustic analyses	953
Calculation and measurement methods	
HARDY, A.E.J., JONES, R.R.K. and TURNER, S., The influence of real-world rail head roughness on railway noise prediction	965
TALOTTE, C., VAN DER STAP, P., RINGHEIM, M., DITTRICH, M., ZHANG, X. and STIEBEL, D., Railway source models for integration in the new European noise prediction method proposed in Harmonoise	975
DITTRICH, M.G. and ZHANG, X., The Harmonoise/IMAGINE model for traction noise of powered railway vehicles	986
ZHANG, X. and JONASSON, H.G., Directivity of railway noise sources	995
JANSSENS, M.H.A., DITTRICH, M.G., DE BEER, F.G. and JONES, C.J.C., Railway noise measurement method for pass-by noise, total effective roughness, transfer functions and track spatial decay	1007
JANSSENS, M.H.A., JANSEN, H.W. and DITTRICH, M.G., Evaluation of the interim measurement protocol for railway noise source description	1029
Mitigation meaures and economics	
BÜHLER, S., Methods and results of field testing of a retrofitted freight train with composite brake blocks	1041
DE VOS, P.H., BERGENDORFF, M., BRENNAN, M. and VAN DER ZIJPP, F., Implementing the retrofitting plan for the European rail freight fleet	1051
SCHULTE-WERNING, B., BEIER, M., DEGEN, K.G. and STIEBEL, D., Research on noise and vibration reduction at DB to improve the environmental friendliness of railway traffic	1058
ASMUSSEN, B., ONNICH, H., STRUBE, R., GREVEN, L.M., SCHRÖDER, S., JÄGER, K. and DEGEN, K.G., Status and perspectives of the "Specially Monitored Track"	1070
XIAOAN, G., Railway environmental noise control in China	1078
OERTLI, J., Developing noise control strategies for entire railway networks	1086
HARDY, A.E.J. and JONES, R.R.K., Warning horns-Audibility versus environmental impact	1091
Index to Volume 293	1099